215

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Danquah, A., De Zelicourt, A., Colcombet, J., & Hirt, H., (2014). The role of ABA and MAPK

signaling pathways in plant abiotic stress responses. Biotechnol. Adv., 32, 40–52.

Datta, K., Baisakh, N., Ganguly, M., Krishnan, S., Yamaguchi-Shinozaki, K., & Datta, S. K.,

(2012). Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor

confers drought and salinity tolerance to rice. Plant Biotechnol J., 10, 579–586.

De Clercq, I., Vermeirssen, V., Van, A. O., Vandepoele, K., Murcha, M. W., Law, S. R., Inzé,

A., et al., (2013). The membrane-bound NAC transcription factor ANAC013 functions in

mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant

Cell, 25, 3472–3490.

Deikman, J., Petracek, M., & Heard, J. E., (2011). Drought tolerance through biotechnology:

Improving translation from the laboratory to farmer’s fields. Curr. Opin. Biotechnol., 23,

243–250.

Denby, K., & Gehring, C., (2005). Engineering drought and salinity tolerance in plants:

Lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol., 23,

9–14.

Diao, W. P., Snyder, J. C., Wang, S. B., Liu, J. B., Pan, B. G., Guo, G. J., & Wei, G., (2016).

Genome-wide identification and expression analysis of WRKY gene family in Capsicum

annuum L. Front. Plant Sci., 7(10), 3389.

DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M., (2013). Genome

engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res.,

41, 4336–4343.

Ding, Z., Li, S., An, X., Liu, X., Qin, H., & Wang, D., (2009). Transgenic expression of

MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in

Arabidopsis thaliana. J. Genet. Genomics, 36, 17–29.

Dong, J., Cao, L., Zhang, X., Zhang, W., Yang, T., Zhang, J., & Che, D., (2021). An R2R3­

MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and

conferred cold tolerance of Arabidopsis. Front Plant Sci., 12, 696919.

Dong, Q., Zheng, W., Duan, D., Huang, D., Wang, Q., Liu, C., Li, C., et al., (2020).

MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic

stresses in transgenic apple callus and Arabidopsis seedlings. Plant Sci., 299, 110611.

Dong, Y., Wang, C., Han, X., Tang, S., Liu, S., Xia, X., & Yin, W., (2014). A novel bHLH

transcription factor PebHLH35 from Populus euphratica confers drought tolerance through

regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem.

Biophys. Res. Commun., 450, 453–458.

Du, C., Zhao, P., Zhang, H., Li, N., Zheng, L., & Wang, Y., (2017). The Reaumuria trigyna

transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J.

Plant Physiol. 215, 48–58.

Du, X., He, F., Zhu, B., et al., (2020). NAC transcription factors from Aegilops markgrafi

reduce cadmium concentration in transgenic wheat. Plant Soil, 449, 39–50.

Duan, M., Zhang, R., Zhu, F., Zhang, Z., Gou, L., Wen, J., Dong, J., & Wang, T., (2017).

A lipid-anchored NAC transcription factor is translocated into the nucleus and activates

glyoxalase I expression during drought stress. Plant Cell, 29, 1748–1772.

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L., (2010).

MYB transcription factors in Arabidopsis. Trends Plant Sci., 15, 573–581.

Ebrahimian-Motlagh, S., Ribone, P. A., Thirumalaikumar, V. P., Allu, A. D., Chan, R. L.,

Mueller-Roeber, B., & Balazadeh, S., (2017). Jungbrunnen1 confers drought tolerance

downstream of the HD-Zip I transcription factor AtHB13. Front. Plant Sci., 8, 2118.